NAME
v.incora.training_data - Creates a vector map containing training points from a set of rules.
KEYWORDS
vector,
classification,
training data
SYNOPSIS
v.incora.training_data
v.incora.training_data --help
v.incora.training_data imperviousness=name landcover=name elevation=name ndvi_max=name ndvi_min=name ndvi_range=name ndwi=name coastline=name buildings=name roads=name water=name blue=name green=name red=name npoints=integer output=name [--overwrite] [--help] [--verbose] [--quiet] [--ui]
Flags:
- --overwrite
- Allow output files to overwrite existing files
- --help
- Print usage summary
- --verbose
- Verbose module output
- --quiet
- Quiet module output
- --ui
- Force launching GUI dialog
Parameters:
- imperviousness=name [required]
- Input imperviousness raster map
- From here: https://land.copernicus.eu/pan-european/high-resolution-layers/imperviousness/status-maps/2015
- landcover=name [required]
- Input landcover raster map
- From here: http://s2glc.cbk.waw.pl/extension
- elevation=name [required]
- Input digital elevation model
- Used to remove builtup training data in high altitudes
- ndvi_max=name [required]
- Input NDVI_maximum raster map from NDVI timeseries
- Name of input raster map
- ndvi_min=name [required]
- Input NDVI_minimum raster map from NDVI timeseries
- Name of input raster map
- ndvi_range=name [required]
- Input NDVI_range raster map from NDVI timeseries
- Name of input raster map
- ndwi=name [required]
- Input NDWI raster map
- Name of input raster map
- coastline=name [required]
- Input coastline raster map
- Name of input raster map
- buildings=name [required]
- Input OSM buildings raster map
- Downloaded from Geofabrik, reprojected using ogr2ogr, rasterized using gdal_rasterize
- roads=name [required]
- Input OSM roads raster map
- Downloaded from Geofabrik, reprojected using ogr2ogr, rasterized using gdal_rasterize
- water=name [required]
- Input OSM water raster map
- Downloaded from Geofabrik, reprojected using ogr2ogr, rasterized using gdal_rasterize
- blue=name [required]
- Input blue band
- Blue band of input satellite image
- green=name [required]
- Input green band
- Green band of input satellite image
- red=name [required]
- Input red band
- Red band of input satellite image
- npoints=integer [required]
- Number of sampling points per class in the output vector map
- output=name [required]
- Name of output vector map containing training points
- Name for output vector map
v.incora.training_data creates a vector map containing training points from a set of rules.
Output classes (incora) are:
- 10 (forest)
- 20 (low veg)
- 30 (water)
- 40 (builtup)
- 50 (bare soil)
- 60 (agriculture)
v.incora.training_data imperviousness=HRL_Imperviousness_null \
landcover=S2GLC_Europe_2017_v1.2 ndvi_max=maja_2019_NDVI_maximum_Mar_May_Jul_Sep \
ndvi_min=maja_2019_NDVI_minimum_Mar_May_Jul_Sep \
ndvi_range=maja_2019_NDVI_range_Mar_May_Jul_Sep \
ndwi=July19_NDWI ndbi=July19_NDBI asm=July19_asm_ASM \
buildings=NRW_OSM_buildings_rast_10m roads=NRW_OSM_roads_rast_10m \
npoints=10000 output=incora_training_auto_2019
r.sample.category,
r.buffer,
r.mapcalc,
r.mask,
r.quantile
Guido Riembauer,
mundialis
Anika Weinmann,
mundialis
SOURCE CODE
Available at:
v.incora.training_data source code
(history)
Accessed: Tuesday Apr 23 08:19:01 2024
Main index |
Vector index |
Topics index |
Keywords index |
Graphical index |
Full index
© 2003-2024
GRASS Development Team,
GRASS GIS 8.4.0dev Reference Manual